On the spectral radius of quasi-tree graphs

نویسندگان

  • Huiqing Liu
  • Mei Lu
چکیده

A connected graphG = (V ,E) is called a quasi-tree, if there exists u0 ∈ V (G) such thatG− u0 is a tree. Denote Q(n, d0) = {G : G is a quasi tree graph of order n with G− u0 being a tree and dG(u0) = d0}. In this paper, we determined the maximal and the second maximal spectral radii of all quasi-tree graphs in the set Q(n, d0). © 2008 Elsevier Inc. All rights reserved. AMS classification: 05C50; 15A18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

Spectral analogues of Erdős’ and Moon-Moser’s theorems on Hamilton cycles

In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number, and minimum degree of graphs which generalized Ore’s theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper we present the spectral analogues of Erdős’ theorem and Moon-Moser’s theorem, respectively. Let Gk n be the ...

متن کامل

Spectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface

This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and di...

متن کامل

Entropy Generation of Variable Viscosity and Thermal Radiation on Magneto Nanofluid Flow with Dusty Fluid

The present work illustrates the variable viscosity of dust nanofluid runs over a permeable stretched sheet with thermal radiation. The problem has been modelled mathematically introducing the mixed convective condition and magnetic effect. Additionally analysis of entropy generation and Bejan number provides the fine points of the flow. The of model equations are transformed into non-linear or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008